上的常识。
这一常识就是“a和b的质因子与它们之和的质因子,应该没有任何联系。”
原因之一就是,允许加法和乘法在代数上交互,会产生无限可能和不可解问题,比如关于丢番图方程统一方法论的希尔伯特第十问题,早就被证明是不可能的。
如果abc猜想被证明是正确的,那么加法、乘法和质数之间,一定存在人类已知数学理论从未触及过的神秘关联。
再者,abc猜想和其他很多数论中的未解问题有着重大联系。
比如刚才提到的丢番图方程问题、费马最后定理的推广猜想、ordell猜想、erd?s–oods猜想等等。
而且,abc猜想还能间接推导出很多已被证明的重要结果,比如费马最后定理。
从这个角度来讲,abc猜想是质数结构的未知宇宙的强力探测器,仅次于黎曼猜想。
一旦abc猜想被证明,对于数论的影响之巨大,无异于相对论和量子物理之于现代物理学。
要解决这个猜想,需找到一把钥匙,通过各种资料的查询,马由基本确定了远阿贝尔几何,作为解开abc猜想的一个途径。
远阿贝尔几何由代数几何教皇格罗滕迪克于二十世纪八十年代创建,是数学界一门非常年轻的学科。
这门学科研究对象是不同几何物体上的代数簇的基本群的结构相似性。
近代分析学之父巴纳赫说“数学家能找到定理之间的相似之处,优秀的数学家能看到证明之间的相似之处,卓越的数学家能察觉到数学分支之间的相似之处。最后,究级的数学家能俯瞰这些相似之处之间的相似之处。”
格罗腾迪克,便称得上是真正意义上的究级数学家,远阿贝尔几何便是一门研究“相似之相似”的数学分支。
数学界曾经流传一句话爱因斯坦对物理学有多重要,格罗滕迪克对数学就有多重要。
在现代代数几何领域,格罗滕迪克就是当之无愧的教皇。
格罗滕迪克的数学向来以艰涩著称,因为他几乎不考虑具体的示例,都是从尽可能抽象的角度出发,思考支配某个数学问题背后的宏大数学结构。
远阿贝尔几何便是格罗滕迪克在他的遗作《纲领草案》中留下的宏伟框架,只可惜还没来得急往里面填充血肉,这位二十世纪最伟大的数学家便在离群索居中离开了人世。
接下来里时间,马由全身心投入到远阿贝尔几何和一般化泰希米勒几何理论的相关研究中去。
这一理论抽象晦涩,理解起来很难,马由隐隐能感受到这一理论背后所隐藏着的宏大的数学结构。
他用电脑没日没夜地推演,通过这些解析,对远阿贝尔几何的理解也在逐步深入。
但有一点可以肯定,用远阿贝尔几何,确实能表现出加法结构和乘法结构的相似性,而abc猜想的核心,便与这两大问题有关。
马由总觉得,以现有的远阿贝尔几何框架,恐怕很那解决这一问题。
必须在这一框架下增加一些全新的东西。
若自己想要证明abc猜想的话,恐怕得提出一套全新的理论体系才行。
但这个难度更大了,在数学领域,攻克一个猜想容易,但想要开创一套体系却极难。
但凡开创一套全新数学体系的,几乎都是开宗立派大宗师级别的人物。
比如开创群论的伽罗瓦,虽然他在21岁那年便英年早逝,但在任何有史以来最伟大数学家排名标准中,伽罗瓦都是前五乃至前三的存在。
又比如,现代代数几何奠基人格罗滕迪克,ega、sga、fga,洋洋洒洒数千页,是代数几何史上的不朽名著,使代数几何这个古老的数学分支焕发出了新的活力,最终导致他的学生皮埃尔·德利