第二十四章 这个时空,唯一的名字!(1 / 3)

.

屋子外。

看着急匆匆跑回屋内的小牛,徐云隐约意识到了什么,也快步跟了上去。

“嘭——”

刚一进屋,徐云便听到了一道重物撞击的声音。

他顺势看去,只见此时小牛正一脸懊恼的站在书桌边,左手握拳,指关节重重的压在桌上。

很明显,刚才小牛对着这张书桌来了波蓄意轰拳。

徐云见状走上前,问道:

“艾萨克先生,您这是.....”

“你不懂。”

小牛有些烦躁的挥了挥手,但没几秒便又想到了什么:

“肥鱼,你——或者那位韩立爵士,对数学工具了解吗?”

徐云再次装傻犯楞的看了他一眼,问道:

“数学工具?您是说尺子?还是圆规?”

听到这番话,小牛的心立时凉了一半,但话说了半截总不能就这样停住,便继续道:

“不是现实的工具,而是一套能够计算变化率的理论。

比如刚才的色散现象,那是一种瞬时的变化率,甚至还可能牵扯到某些肉眼无法见到的微粒。

而要计算这种变化率,我们就需要用到另外一种可以连续累加的工具,去计算折射角的积。

比如n个a+b相乘,就是从a+b中取一个字母a或b的积,例如(a+b)2a2+2ab+b2...算了,我估计你也听不懂。”

徐云似笑非笑的看了他一眼,说道:

“我听得懂啊,杨辉三角嘛。”

“嗯,所以还是准备一下等下去威廉舅.....等等,你说什么?”

小牛原本正顺着自己的念头在说话,听清徐云的话后顿时一愣,旋即猛然抬起头,死死地盯着他:

“羊肥三搅?那是什么?”

徐云想了想,朝小牛伸出手:

“能把笔递给我吗,艾萨克先生?”

如果这是在一天前,也就是小牛刚见到徐云那会儿,徐云的这个请求百分百会被小牛拒绝。

甚至有可能会被再送上一句‘你也配?’。

但随着不久前色散现象的推导,此时的小牛对于徐云——或者说他身后的那位韩立爵士,已经隐约产生了一丝兴趣与认同。

否则他刚刚也不会和徐云多解释那么一番话了。

因此面对徐云的要求,小牛罕见的递出了笔。

徐云接过笔,在纸上快速的写画了一个图:

.............1

....... 1......1

....1......2......1

1.....3.......3.........1(请忽略省略号,不加的话会自动缩进,晕了)

.......

徐云一共画了八行,每行的最外头两个数字都是1,组成了一个等边三角形。

熟悉这个图像的朋友应该知道,这便是赫赫有名的杨辉三角,也叫帕斯卡三角——在国际数学界,后者的接受度要更高一些。

但实际上,杨辉发现这个三角形的年份要比帕斯卡早上四百多年:

杨辉是南宋生人,他在1261年《详解九章算法》中,保存了一张宝贵图形——“开方作法本源”图,也是现存最古老的一张有迹可循的三角图。

不过由于某些众所周知的原因,帕斯卡三角的传播度要广很多,一些人甚至根本不认杨辉三角的这个名字。

因此纵有杨辉的原笔记录,这个数学三角形依旧被叫做了帕斯卡三角。

但值得一提的是......

帕斯卡研究这幅三角图的时间是1654年,正式公布的时间是1665年11月下旬,离现在.....