第二百五十七章 见证奇迹吧!(上)(4 / 6)

是弯曲的,因此两个t的方向并不相同。”

“假设a点处张力的方向跟横轴夹角为θ,b点跟横轴的夹角就明显不一样了,记为θ+Δθ。”

“因为波段上的点在波动时是上下运动,所以只需要考虑张力t在上下方向上的分量。”

“b点处向上的张力为t·s(θ+Δθ),a点向下的张力为t·sθ,那么,整个ab段在竖直方向上受到的合力就等于这两个力相减.......”

很快。

小麦在纸上写下了一个公式:

f t·s(θ+Δθ)t·sθ。

徐云满意的点了点头,又说道:

“那么波的质量是多少呢?”

“波的质量?”

这一次。

小麦的眉头微微皱了起来。

如果假设波段单位长度的质量为μ,那么长度为Δl的波段的质量显然就是μ·Δl。

但是,因为徐云所取的是非常小的一段区间。

假设a点的横坐标为x,b点的横坐标为x+Δx。

也就是说绳子ab在横坐标的投影长度为Δx。

那么当所取的绳长非常短,波动非常小的时候,则可以近似用Δx代替Δl。

这样绳子的质量就可以表示为......

μ·Δx

与此同时。

一旁的基尔霍夫忽然想到了什么,瞳孔微微一缩,用有些干涩的英文说道:

“等等......合外力和质量都已经确定了,如果再求出加速度....”

听到基尔霍夫这番话。

原本就不怎么喧闹的教室,忽然又静上了几分。

对啊。

不知不觉中,徐云已经推导出了合外力和质量!

如果再推导出加速度......

那么不就可以以牛二的形式,表达出波在经典体系下的方程了吗?

想到这里。

几位大佬纷纷拿出纸笔,尝试性的计算起了最后的加速度。

说起加速度,首先就要说说它的概念:

这个是用来衡量速度变化快慢的量。

加速度嘛,肯定是速度加得越快,加速度的值就越大。

比如我们经常可以听到的“我要加速啦”等等。

假如一辆车第1秒的速度是2/s,第2秒的速度是4/s。

那么它的加速度就是用速度的差(422)除以时间差(211),结果就是2/s??。

再来回想一下,一辆车的速度是怎么求出来的?

当然是用距离的差来除以时间差得出的数值。

比如一辆车第1秒钟距离20米,第2秒钟距离50米。

那么它的速度就是用距离的差(502030)除以时间差(211),结果就是30/s。

不知道大家从这两个例子里发现了什么没有?

没错!

用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。

那么......

如果把这两个过程合到一块呢?

那是不是就可以说:

距离的差除以一次时间差,再除以一次时间差就可以得到加速度?

当然了。

这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。

如果把距离看作关于时间的函数,那么对这个函数求一次导数:

就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数、

对速度的函数再求一次导数,就得到了加速度的表示。

鲜为人