第一百三十三章 张硕:你是要和我讨论数学问题?(二合一大章)(1 / 5)

在去首都之前,张硕一直在研究费米子哈伯德模型的简化计算问题,但并不是专注于研究任务,大部分时间还是看各种资料来增加自己的知识量。

当对相关知识有足够多的了解,再以数学分析手段去进行研究就是事半功倍了。

现在任务进度接近‘70%’,速度可以说非常快了。

这和NS方程数值模拟的研究也有关系。

NS方程数值模拟中的一些方法框架、一些想法框架,也可以用在物理模型计算模拟的简化上。

数学模型和偏微分方程的研究不一样。

偏微分方程,以数学角度去进行研究,就是纯粹的数学问题。

物理现象的数学模型,则要从物理描述的理解开始。

数学模型比方程要复杂的多,仅仅是模型表达的含义都需要理解很多的问题,也因为模型太过于复杂,单纯以数学的方式是研究不了的。

所以,简化算法的研究要从物理方向的理解开始。

费米子哈伯德模型上,每一个参数都对应一种物理表达,以物理方向的理解着手,就无法再进行简化。

这就是矛盾之处。

模型表达太复杂,以纯数学的方法无法做研究,但物理方向上又无法再进行简化。

张硕已经找到了明确的方向,并且研究的已经很深入,初始就是对费米子哈伯德模型的哈密顿量进行分析。

哈密顿量是所有粒子的动能的总和加上与系统相关的粒子的势能,对于不同的情况或数量的粒子,哈密顿量是不同的,因为它包括粒子的动能之和以及对应于这种情况的势能函数。

研究本身是对于计算模拟的简化,并不是对于费米子哈伯德模型的简化,所以针对模型的哈密顿量进行研究,考虑的方向也是如何运算才能简化整体的计算过程。

以物理角度的理解,对哈密顿量的分析,再考虑运算问题,等等,一系列的研究,最终目的都只有一个——

数值计算!

费米子哈伯德模型,可以简单理解为‘对超导体内电子状态的描述’。

模型的数值计算,也就是通过计算得知超导体内电子的即时状态。

有关费米子哈伯德模型的数值计算,国际上已经有很多的研究,包括集合量子蒙特卡洛、张量重正化群等,都是数值分析手段。

张硕看了很多的资料,他的研究主要在两个方向上,一个是计算模拟。

一個是数值法。

NS方程计算模拟的研究中,有一部分方法框架可以用在数学模型的计算模拟简化上,但前提是完成数值法的研究。

所以两者还是一个研究。

数值法,也就是对费米子哈伯德模型进行数值求解,类似的研究已经有很多了,但没有任何一种方法可以简化数值求解。

张硕找到了一种方法,并命名为‘多重无穷尽离散分析’。

多重无穷尽离散分析,并不是做无穷尽的计算,而是进行列举计算,计算的越多分析的数值结果就越准确。

这就像是找一个最接近一的数字。

在进行一次分析后,得出的结果是0.9;进行两次分析得出的结果是0.99;三次分析结果是0.999……

无穷尽,不断的接近。

这会让数值法变得更精准,若是只进行接近性的计算,计算量相对会小很多倍,计算模拟也就得到了简化。

……

整整一周时间,张硕都专注于费米子哈伯德模型的研究中。

当专注进行研究的时候,再加上‘氪币’带来的方向指引,任务进度增长就会很快,进度已经提升到了‘91%’。

张硕每